Контрольно-измерительные приборы

Контрольно-измерительный прибор — средстство измерения, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Часто контрольно-измерительным прибором называют средство измерений для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия оператора.

Назначение контрольно-измерительных приборов (КИП) состоит в том, чтобы целенаправленным образом преобразовать исследуемые величины в форму, которая окажется наиболее удобной при конкретном использовании (или непосредственном восприятии) машиной или человеком.
К примеру, говоря о назначении контрольно-измерительных приборов, связанных с электроизмерениями (амперметры, гальванометры, вольтметры и проч.), надо понимать, что изучаемые электрические величины (количественно оценить изменения которых органы человеческих чувств непосредственно не способны) с их помощью преобразуются в определенные механические перемещения соответствующих указателей, в качестве которых выступают стрелка или световой луч. Аналогично и для преобразуемых в механические перемещения физических величин (в частности, пружинные манометры, волосяные гигрометры, ртутные термометры и проч.).
Соответствующее назначение контрольно-измерительных приборов должно подкрепляться уверенностью в получаемых данных, в процедурах исследований и контроля, для чего необходимо подтверждение пригодности аппаратуры для использования с точностью и по принятым эталонам.

Все контрольно-измерительные приборы можно классифицировать на различные группы по следующим признакам:

род измеряемой величины;
– способ отсчета;
– вид шкалы;
– метрологическое назначение.

Выделяют следующие группы контрольно-измерительных приборов в соответствии с родом измеряемой величины:
приборы для измерения линейно-угловых величин (линейки, рулетки, курвиметры, угломеры, уровни, микрометры, штангенциркули);
весоизмерительная техника:
1) меры массы (гири);
2) весоизмерительные приборы (весы);
приборы для измерения температуры:
1) контактный метод (термометры);
2) бесконтактный метод (тепловизоры, пирометры);
приборы для измерения давления, а также расхода вещества (деформационные манометры, дифференциальные манометры, преобразователи давления, расходомеры);
приборы химического анализа (газоанализаторы, ph-метры, алкометры);
электроизмерительные приборы (амперметры, вольтмаетры, омметры);
геодезические приборы (нивелиры оптические, построители лазерных плоскостей, нивелиры ротационные, теодолиты оптические, теодолиты электронные);
приборы для измерения физико-химических величин (анемометры, влагомеры, гигрометры, ареометры);
– прочее.

По способу отсчета все контрольно-измерительные приборы можно подразделить на следующие группы:
компарирующие приборы – при измерении этими приборами необходимо участие человека, в них происходит сравнивание измеряемой величины с мерой, эталонной величиной (пример: рычажные весы);
показывающие приборы – величина измеряемого параметра уазывается отсчетным устройством (пример: дальномер);
регистрирующие приборы – значение измеряемой величины в них непрерывно или в отдельные промежутки времени записывается (пример: логгер);
суммирующие приборыили интеграторы – в них происходитнепрерывное суммирование мгновенных значений измеряемого параметра (пример: счетчик электроинергии);
комбинированные приборы – они могут одновременно показывать и записывать величину измеряемого параметра (пример: секундомер).

По виду шкалы все контрольно-измерительные приборы можно подразделить на следующие группы:
цифровые;
аналоговые:
1) с линейной шкалой;
2) с дуговой шкалой;
3) с профильной шкалой;
4) с барабанной шкалой;
Такие шкалы могут быть подвижные и неподвижные, равномерные и неравномерные.

По метрологическому назначению различают эталонные и рабочие контрольно-измерительные приборы.Рабочий прибор – средство измерений, предназначенное для измерений, не связанных с передачей размера единицы другим средствам измерений.
Эталонные приборы предназначены для передачи размера единицы другим измерительным приборам, что составляет главную задачу поверки. Поэтому эталонные приборы называют также средствами поверки. Средства поверки – эталоны, поверочные установки и другие средства измерений, применяемые при поверке в соответствии с установленными правилами.

Контрольно-измерительные инструменты. Выбор средств измерений

1. Выбор средств измерений и их применение

Выбор средств измерений при проверке точности деталей — один из важнейших этапов разработки технологических процессов технического контроля.

Основные принципы выбора средств измерений заключаются в следующем: точность средства измерений должна быть достаточно высокой по сравнению с заданной точностью выполнения измеряемого размера, а трудоемкость измерений и их стоимость должны быть возможно более низкими, обеспечивающими наиболее высокие производительность труда и экономичность.

Недостаточная точность измерений приводит к тому, что часть годной продукции бракуют (ошибка первого рода); в то же время по той же причине другую часть фактически негодной продукции принимают как годную (ошибка второго рода).

Излишняя точность измерений, как правило, бывает связана с чрезмерным повышением трудоемкости и стоимости контроля качества продукции, а следовательно, ведет к удорожанию ее производства.

При выборе измерительных средств и методов контроля изделий учитывают

Определяющим фактором является допускаемая погрешность измерительного средства, что вытекает из стандартизованного определения действительного размера как и размера, получаемого в результате измерения с допустимой погрешностью.

Самый простой способ выбора средств измерений основан на том, что точность средства измерений должна быть в несколько раз выше точности изготовления измеряемой детали. При контроле точности технологических процессов измерением точности размеров деталей рекомендуется применять средства измерений с ценой деления не более 1/6 допуска на изготовление.

Значение допустимой погрешности измерения зависит от допуска, который связан с номинальным размером и с квалитетом точности размера контролируемого изделия. Расчетные значения допустимой погрешности измерения в мкм приводятся в стандартных таблицах.

Рекомендуется, чтобы величины допустимых погрешностей измерения для квалитетов 2–9 составляли до 30%, для квалитета 10 и грубее — до 20% допуска на изготовление изделия.

2. Контрольно-измерительные инструменты

К инструментам с линейным нониусом относятся штангенциркуль, штангенрейсмас и штанген-глубиномер. Основой штангенинструмента является линейка — штанга с нанесенными на ней делениями; это – основная шкала. По штанге движется рамка с вырезом, на наклонной грани которого нанесена нониусная (вспомогательная) шкала.

Штангенциркуль (рис. 2) предназначен для измерения линейных размеров (диаметров, глубины, ширины, толщины и т.п.). На длине 9 мм рамки (нониуса), соответствующей 9 делениям штанги, нанесено 10 равных делений. Таким образом, каждое деление нониуса равно 0,9 мм.

Рис. 2. Методы измерения размеров штангенциркулем

Если поставить рамку так, чтобы шестой штрих нониуса стал против шестого штриха штанги, то зазор между губками будет равен 0,6 мм (рис. 3, А).

Рис. 3. Установка нониуса: А — на размер 0,6 мм; Б — на размер 7 мм; В — на размер 7,4 мм

Если нулевой штрих нониуса совпал с каким-либо штрихом на штанге, например с седьмым, то это деление и указывает действительный размер в миллиметрах, т.е. 7 мм (рис. 3, Б).

Если нулевой штрих нониуса не совпал ни с одним штрихом на штанге, то ближайший штрих на штанге слева от нулевого штриха нониуса показывает целое число миллиметров. Десятые доли миллиметра равны порядковой цифре штриха нониуса вправо, не считая нулевого, который точно совпал со штрихом штанги — основной шкалы (например 7,4 мм на рис. 3, В).

Кроме нониусов с величиной отсчета 0,1 мм применяются нониусы с величиной отсчета 0,05 и 0,02 мм.

Штангенрейсмасы предназначаются для точной разметки и измерения высот от плоских поверхностей.

Штангенрейсмас (рис. 4, а) состоит из основания 8, в котором жестко закреплена штанга 1 со шкалой; рамки 2 с нониусом 6 и стопорным винтом 3; устройства для микрометрической подачи 4, включающего в себя движок, винт, гайку и стопорный винт; сменных ножек для разметки 7 с острием и для измерения высот 9 с двумя измерительными поверхностями, нижней плоской и верхней в виде острого ребра шириной не более 0,2 мм (рис. 4, б); зажима 5 для закрепления ножек 7 и 9 и державки 10 на выступе рамки (рис. 4, в) для игл различной длины.

Рис 4. Штангенрейсмас

Шкала и нониус такие же, как и у других штангенинструментов.

Измерение или разметка штангенрейсмасом производится на разметочной плите. Перед измерением проверяется нулевая установка инструмента. Для этого рамку с ножкой опускают до соприкосновения с плитой или специальной базовой поверхностью (в зависимости от вида ножки). При таком положении нулевое деление нониуса должно совпасть с нулевым делением шкалы штанги.

После выверки штангенрейсмаса можно приступать к измерениям. При измерении высоты детали опускают вручную рамку с ножкой, немного не доводя ее до детали. Дальнейшее перемещение ножки до соприкосновения с деталью осуществляется с помощью гайки микрометрической подачи. Степень прижима ножки к детали определяется на ощупь. В установленном положении рамку закрепляют.

При разметке размер устанавливается по шкалам нониуса и штанги заранее. Риска на детали прочерчивается острым концом ножки при перемещении штангенрейсмаса по плите. При измерении с помощью игл (рис. 4, в) необходимо от показания штангенрейсмаса М вычесть величину m, которая соответствует такому положению рамки 2, когда острие иглы находится в одной плоскости с плоскостью основания .

Индикаторы часового типа. Вследствие небольшого предела измерений инструменты этой группы предназначаются главным образом для относительных (сравнительных) измерений путем определения отклонений от заданного размера. В сочетании со специальными приспособлениями эти приборы могут применяться и для непосредственных измерений. Они используются также и для контроля правильности геометрических форм деталей машин и их взаимного расположения. Наибольшее распространение из приборов этой группы получили индикаторы часового типа (рис. 5, а) с ценой деления 0,01 мм; применяются также индикаторы с ценой деления 0,002 мм.

При перемещении измерительного стержня на 1 мм стрелка индикатора делает полный оборот. Индикаторы, пределы измерения которых более 3 мм, имеют счетчик оборотов стрелки.

Практика измерений. Индикаторы часового типа применяют при измерениях радиального и осевого биения, отклонений от прямолинейности, отклонений положения одной детали относительно другой, при проверке взаимного расположения поверхностей и пр.

Рис. 5. Индикатор часового типа (а) и установка индикатора для измерения: б — на универсальном штативе; в — различные способы крепления индикаторной головки на штативе

При измерениях применяют универсальный штатив и другие приспособления.

Индикатор, установленный в универсальном штативе (рис. 5, б), может занимать самые различные положения по отношению к проверяемому изделию. Конструктивное оформление универсальных штативов может быть различным, но принципиальная схема их остается одной и той же. Варианты приведены на рис. 5, в.

При любом измерении индикатором (абсолютном или относительном) его нужно установить в некоторое начальное положение. Для этого измерительный наконечник приводят в соприкосновение с поверхностью установочной меры (или столика). Индикатор подводят так, чтобы стрелка его сделала 1–2 оборота. Таким образом стержню индикатора дается натяг, чтобы в процессе измерения индикатор мог показать как отрицательные, так и положительные отклонения от начального положения или установочной меры. Стрелка индикатора при этом устанавливается против какого-либо деления шкалы. Дальнейшие отсчеты следует вести от этого показания стрелки, как от начального. Чтобы облегчить отсчеты, начальное показание обычно приводят к нулю. Установка индикатора на нуль осуществляется поворотом циферблата за рифленый ободок.

При измерениях индикаторным нутромером его предварительно настраивают на измеряемый размер по микрометру, блоку плоскопараллельных концевых мер или калиброванному кольцу и после этого устанавливают на нуль.

Настроенный нутромер осторожно вводят в измеряемое отверстие и небольшими покачиваниями (рис. 6, а) определяют отклонение стрелки от нулевого положения. Это и будет отклонение измеряемого размера от того, на который был настроен. В тех случаях, когда измерительный стержень индикаторной головки не может коснуться измеряемой поверхности, прибегают к специальным рычажным приспособлениям, соединенным с корпусом индикатора. Устройство этих приспособлений ясно из рисунка (рис. 6, б).

Рис. 6. Индикаторный нутромер (а) и рычажные приспособления к индикатору (б), применяемые для измерений в труднодоступных местах

Микрометры для наружных измерений (рис. 7), микрометрические нутромеры и микрометрические глубиномеры относятся к микрометрическим инструментам.

Рис. 7. Микрометр для наружных измерений: 1 — пятка; 2 — микрометрический винт; 3 — стопорная гайка; 4 — втулка; 5 — барабан; 6 — трещотка; 7 — скоба

Отсчетное устройство микрометрических инструментов состоит из втулки 1 (рис. 8, а) и барабанчика 2. На втулке по обе стороны продольной линии нанесены две шкалы с делениями через 1 мм так, что верхняя шкала сдвинута по отношению к нижней на 0,5 мм.

На скошенном конце барабанчика имеется круговая шкала с 50 делениями. При вращении барабанчик перемещается вдоль втулки и за один оборот проходит путь, равный 0,5 мм. Следовательно, цена деления шкалы барабанчика равна 0,5:50=0,01 мм.

При измерениях целое число миллиметров отсчитывают по нижней шкале, половины миллиметров — по верхней шкале втулки, а сотые доли миллиметра — по шкале барабанчика. Число сотых долей миллиметра отсчитывают по делению шкалы барабанчика, совпадающему с продольной риской на втулке.

Примеры отсчета по шкалам микрометра приведены на рис. 8.

Рис. 8. Методика отсчета размеров по шкале микрометрического инструмента: а — 11,0 мм; б — 9,36 мм; в — 10,5 мм; г — 9,86 мм

Чтобы при измерении микрометром ограничить силу натяжения на измеряемую деталь и обеспечить постоянство этой силы, микрометр снабжается трещоткой.

Перед тем как прочесть показания микрометра, барабанчик закрепляют с помощью специального стопора.

Кроме обычных штангенциркулей и других инструментов с нониусной шкалой и шкалой часового типа применяют также и модели инструментов с электронными цифровыми индикаторами, которые выводят на экран в цифровом виде показания значений произведенного измерения.

При эксплуатации измерительных приборов следует помнить, что измерительные поверхности у наконечников должны быть чистыми, а измеряемые поверхности деталей должны быть чистыми и их температура не должна отличаться от температуры измерительных приборов. Недопустимо измерять горячие детали точными измерительными приборами. В руках измерительные приборы долго держать нельзя, так как это влияет на точность измерений. Не допускается измерять подвижные детали, потому что это опасно, приводит к быстрому износу измерительных поверхностей инструмента и к потере точности результатов измерения.

Читайте также:  Каким материалом следует покрывать лестницу в доме, а какое средство может навредить покрытию

При кратковременном и длительном хранении измерительный инструмент протирают мягкой ветошью с авиабензином и смазывают тонким слоем технического вазелина. Измеряющие поверхности наконечников отделяют друг от друга, а стопоры ослабляют. При длительном хранении инструменты обертывают промасленной бумагой.

Перед тем как приступить к измерениям рекомендуют проверить нуль показаний средств измерения. Для этого предварительно настраивают показания шкалы инструмента на измеряемый размер по мерным плиткам (плоскопараллельным концевым мерам) или по калиброванному кольцу или валику и таким образом определяют положение нуля при измерениях.

Щупы служат для определения величины зазоров с точностью 0,01 мм (рис. 9).

Рис. 9. Набор щупов

Щупы изготовляются 1-го и 2-го классов точности с толщиной пластин от 0,03 до 1 мм и с интервалом 0,01 мм или больше, в зависимости от номера набора.

Поверочные плиты (рис. 10) являются основными средствами проверки плоскостности поверхности детали методом на краску. Плиты изготовляют из чугуна размерами от 100х200 до 1000х1500 мм.

На поверхности плит не должно быть коррозийных пятен или раковин.

Поверочные плиты служат не только для контроля плоскостности. Их широко используют в качестве базы для различных контрольных операций с применением универсальных средств измерений (рейсмусов, индикаторных стоек и др.)

Рис. 10. Поверочные плиты

Поверочные линейки стальные. Отклонения от плоскостности и прямолинейности (отклонения формы плоских поверхностей) контролируют с помощью поверочных линеек (рис. 11). Поверочные линейки выпускают лекальные с двусторонним скосом (рис. 11, а); трехгранные (рис. 11, б) и четырехгранные (рис. 11, в); с широкой рабочей поверхностью (прямоугольного сечения (рис. 11, г) и двутаврового сечения (рис. 11, д), «чугунные мостики» (рис. 11, е).

Рис. 11. Поверочные линейки

Линейки выпускаются различных размеров (LxHxB мм): а – до 320х40х8; б – до 320х30; в – до 320х25; г – до 1000х60х12; д – до 4000х160х30.

Поверочные линейки изготовляют длиной: лекальные — до 500 мм, «чугунные мостики» — до 2500 мм и более. Лекальные применяют для контроля прямолинейности поверхности детали «на просвет», а поверочные линейки «чугунные мостики» — применяют для проверки прямолинейности «на краску», с помощью щупа или папиросной бумажки.

При проверке на просвет (рис. 12, а) лекальную линейку укладывают острым скосом на проверяемую поверхность, а источник света помещают сзади линейки и детали. Минимальная ширина щели, улавливаемая глазом, составляет 3…5 мкм. Для контроля щели просвета обычно используют щупы.

Рис. 12. Схема контроля отклонения от плоскостности лекальной линейкой «на просвет»: а — визуально; б — с образцом просветов

Измерение отклонений от прямолинейности лекальными линейками «на просвет» требует навыка от исполнителя. Для выработки навыка оценивать на глаз по величине просвета величину отклонения от прямолинейности применяют образец просветов (рис. 12, б), который состоит из лекальной линейки 1, комплекта из четырех концевых мер длины с градацией 1 мкм, двух одинаковых концевых мер длины (2) и стеклянной пластины 3. При измерении между концевыми мерами длины и ребром линейки образуются «просветы», окрашенные в разные цвета вследствие дифракции видимого света и от величины зазора между линейкой и концевой мерой длины.

Контрольно-измерительные инструменты: основные виды мерительных приборов в машиностроении

Всевозможные детали для современных станков необходимо изготавливать с высокой точностью. Это значит, что на завершающих стадиях производства их геометрические параметры необходимо проверять на соответствие нормам, для чего и применяют контрольно-измерительные инструменты. Использование линеек, штангенглубиномеров, щупов обязательно в процессе выпуска заготовок, поэтому нужно знать, что они из себя представляют, какими должны быть, как работают. В статье мы рассмотрим разные типы, чтобы вы впоследствии могли сделать правильный выбор.

Таких приспособлений придумано и внедрено уже очень много, и они отличаются между собой по самым разным показателям. Мы приведем наиболее полезные признаки, по которым их можно сгруппировать или, наоборот, разделить. Такой подход облегчит их покупку – вам будет проще понять, что требуется заказать.

Классификация мерительного инструмента в машиностроении: виды

Ключевой параметр – поставленные задачи, по назначению выделяют следующие его варианты:

Категории достаточно условны: в одну из них способны входить сразу несколько приспособлений. Например, линейка является и ручной, и механической.

Также идет деление по материалам изготовления (устройства, выполненные из металла, пластика, дерева, композитов) и по конструкции (простые и сложные). Но есть еще один эксплуатационный показатель, заслуживающий отдельного рассмотрения.

Классификация измерительных инструментов по уровню точности

Для каждой группы существует свой класс, то есть максимальная погрешность, которую можно допустить при определении геометрических параметров заготовки. Механические приборы могут быть:

Технические характеристики инструментов для измерения размеров

Все они должны строго соответствовать ГОСТам. Каким именно? Это зависит от типа, конструкции, назначения приспособления. Опираясь на действующие межгосударственные стандарты, производители могут выпускать линейки, щупы и другие приборы по собственным ТУ, при условии, что качество готового изделия будет высоким.

Но у потребителей традиционно больше доверия к ГОСТам, которые стали своеобразным знаком качества, поэтому заводы-изготовители стараются всячески акцентировать внимание именно на них, указывая в рекламе, выбивая на корпусах и тому подобное.

В общем же случае требования к устройству и характеристикам определяют:

Проверка на соответствие осуществляется в процессе приемки, вместе с порядком упаковки и комплектации, перевозки и хранения, использования и утилизации.

Все рассматриваемые помощники призваны определить габариты заготовки, но они могут давать и неточные результаты – чаще всего из-за неправильного их использования. Приложить линейку не так, как нужно, проще, чем может показаться. Но также погрешности возникают из-за неисправностей, повреждений, дефектов, загрязнений приспособлений.

Эксплуатация инструментов

Осуществляется на основании ГСИ – Государственной Системы Измерений, обеспечивающей единство метрологических приемов и решающей сразу две важные задачи:

Сама ГСИ является частью структуры Росстандарта, потому именно в региональных подразделениях федерального агентства стоит решать все вопросы, касающиеся аттестации.

Важной задачей любого предприятия, эксплуатирующего механические или цифровые устройства, является поддержание этих приборов в исправном состоянии, а для этого их необходимо регулярно поверять, отдавая на экспертизу в лаборатории.

Виды контрольно-измерительных инструментов

Рассмотрим те из них, которые продолжают активно применять в машиностроении, при обработке различных материалов и выполнении широкого ряда слесарных операций.

Поверочные линейки

Входят в категорию ручных, служат для определения отклонения от нормальных показателей прямолинейности и плоскостности. Изготавливаются из твердых металлов – из чугуна или стали.

Существуют следующие их варианты:

Поверочные призмы

Эти виды мерительного инструмента повсеместно используются для позиционирования осей, а также для выверки валов и нанесения разметки. Еще одна ниша, в которой они актуальны, – проверка степени вертикальности/параллельности. Также с их помощью крепят заготовки, прежде чем приступить к растачиванию.

Штангенглубиномер

Это приспособление с выносной линейкой и дисплеем, фиксирующим значения. Его роль – определять глубину различных отверстий и пазов (что ясно даже из его названия). Современные его модели – цифровые, обеспечивающие точность до 0,01 мм.

Особенно востребован при проведении следующих работ:

Штангензубомер

Это измерительный инструмент, описание которого уместится в емкое: «гибрид глубиномера и циркуля». По своей конструкции он представляет собой что-то среднее: это приспособление с двумя планками, скрещенными под прямым углом. По той, что в процессе эксплуатации располагается вертикально, фиксируют высоту зубьев. По горизонтальной – их толщину.

Данное устройство очень востребовано при выпуске различных шестеренок и реек.

Штангенциркуль

Настоящая классика для вычисления линейных показателей (как наружных, так и внутренних) всевозможных объектов. Подходит для широкой номенклатуры предметов, позволяет найти ДхШхВ и по праву считается универсальным. До сих пор применимы механические его модели, хотя самыми современными давно уже считаются электронные.

В общем случае применение контрольно-измерительного инструмента сводится к следующим действиям:

Важно обеспечить аккуратность позиционирования, тогда полученная цифра будет максимально точной.

Микрометр

Тоже предоставляет возможность вычислить линейные показатели, но выполнен по-другому. По своей конструкции может быть:

Нутромер

Это очень популярный измерительный инструмент, и его назначение – быстрое и точное нахождение размеров внутренних поверхностей, отверстий и пазов всевозможных заготовок.

Современные его вариации выпускаются в двух исполнениях:

Угломер

Назначение мерительного инструмента в этом случае сводится к контролю точности выдерживания угла между различными поверхностями, например, двух деталей или функциональных узлов.

Наиболее распространенный вариант – слесарный, с нониусом, то есть шкалой, обеспечивающей наглядное и прецизионное считывание.

Радиусные и резьбовые шаблоны

Представляют собой наборы пластин, сделанных из прочного металла (обычно это высокоуглеродистая сталь). Нужны для операций контроля.

Первые их разновидности, как ясно из названия, помогают найти радиусы кривизны различных заготовок. Выпуклые элементы позволяют определить внутренние диаметры, вогнутые – наружные.

С помощью вторых можно выяснить параметры резьб, нанесенных в дюймах или метрах, а именно число ниток (витков) и номинальный шаг соответственно. Для этого достаточно приложить приспособление к поверхности объекта и зафиксировать расхождение.

Кронциркуль

Этот специальный мерительный инструмент используется человечеством для сравнения реальных значений с эталонными вот уже 2,5 тысячи лет. Применяя его, можно найти:

Работать с ним достаточно просто: нужно лишь развести его ножки на необходимую дистанцию, а после сводить лапки – вплоть до того, пока они не коснутся поверхностей заготовки. Дальше останется лишь зафиксировать полученный показатель.

Штангенрейсмас

Данное приспособление очень удобно при нанесении вертикальной разметки и при вычислении высот различных объектов. Представляет собой рамку на тяжелом основании, оснащенную призмой (или ножкой), нониусом, парой винтов, штангой с линейкой и двумя фиксаторами.

Давайте посмотрим, как в этом случае правильно проводить измерения (и измерительные инструменты, при их корректном использовании, обеспечивают высокую точность результатов). Действуйте так:

Читайте также:  Клеммники WAGO: технические характеристики, серии, виды

Обычно выпускается в виде целого набора пластин толщиной 0,02-1 мм. Среди них можно без проблем выбрать ту, которую удастся максимально плотно вставить между элементами сопряжения или двумя объектами. Таким вот нехитрым образом и определяется величина зазора – основная рабочая характеристика измерительного инструмента.

Концевые меры длины

Представляют собой комплекты плоских и отполированных плиток, сделанных из керамики и/или высоколегированных сортов стали. Все они укладываются в футляр из дерева и пластика (причем каждая занимает свою, строго определенную ячейку), а в процессе использования достаются по мере необходимости.

Нужную из них прикладывают к поверхности детали и таким образом:

Наборы образцов шероховатости

Говоря о том, какие инструменты относятся к измерительным, нельзя забывать о самых простых, но в то же время полезных. Данное приспособление относится именно к такому типу. Это тоже комплекты плиток, но уже с рельефными поверхностями. Они собираются в футляры, из которых и извлекаются на свет по мере надобности.

С их помощью можно:

На практике они используются после осуществления целого ряда важных операций. Современное назначение контрольно-измерительных приборов и инструментов в машиностроении – определение правильности выполнения расточки, фрезерования (торцевого, цилиндрического или перекрестного), шлифования (в том числе и достаточно специфического, вроде чашеобразного). Причем реальные результаты сравниваются с эталонными значениями как визуально, так и тактильно.

Любые из рассмотренных приспособлений, даже простейшие, будут точны только при грамотном хранении, регулярном уходе, аккуратной эксплуатации. Важно держать их в предназначенных для этого футлярах, очищать и смазывать, оберегать от силовых воздействий и влаги, своевременно сдавать на поверку.

Теперь вы и сами легко перечислите, какие есть основные измерительные инструменты, и сможете правильно предназначать их для выполнения тех или иных операций. Ну а если потребуется заказать какие-то из них, обращайтесь, и мы по выгодным ценам предоставим все необходимые устройства.

Классификация измерительных приборов и список технических устройств

Измерительные приборы прочно вошли в жизнь человека. За счет обширной классификации измерительных приборов можно определить именно тот аппарат, который понадобится для конкретных операций. Это могут быть как простейшие, по типу рулетки или амперметра, так и мультифункциональные измерительные приборы. При выборе устройства следует ориентироваться на его предназначение и основные характеристики.

Общие сведения

Измерительным прибором называют такое устройство, которое позволяет получить значение некоторой физической величины в заданном диапазоне. Последний задается с помощью приборной шкалы. А также технические приборы позволяют переводить величины в более понятную форму, которая доступна определенному оператору.

В настоящее время список измерительных приборов довольно широк, но большинство из них предназначается для контроля за проведением технологического процесса. Таким может быть датчик температуры или охлаждения в кондиционерах, нагревательных печах и других устройствах со сложной конструкцией.

Среди наименований измерительных инструментов есть как простые, так и сложные, в том числе и по конструкции. Причем сфера их применения может быть как узкоспециализированной, так и распространенной.

Чтобы узнать больше сведений о конкретном инструменте, необходимо рассмотреть определенную классификацию контрольно-измерительных устройств и приборов.

Виды измерительных приборов

В зависимости от того, какие бывают измерительные инструменты, их названия могут отличаться в разных классификациях.

Обычно приборы могут быть следующего вида:

Вышеописанные приборы являются наиболее распространенными и применяются для измерения ряда физических величин. Сложность происходящих физических процессов требует применения нескольких приборов, причисляемых к разным классам.

Классификация устройств

В разных сферах применяется своя классификация устройств, предназначенных для измерения физических величин.

Приборы могут делиться по таким критериям:

  1. Способ преобразования: прямое действие, сравнение, смешанное преобразование.
  2. По способу выдачи информации делятся на показывающие и регистрирующие.
  3. Вид выходной информации может быть представлен как аналоговым, так и цифровым сигналом.

Регистрирующие устройства делятся на самопишущие и печатающие разновидности. Наиболее прогрессивным вариантом являются самопишущие аппараты, поскольку у них выше точность предоставления информации и шире возможности для измерения заданных ранее параметров.

Аналоговые и цифровые

Контрольно-цифровые инструменты могут быть как цифровыми, так и аналоговыми. Первые считаются более удобными. В них показатели силы, напряжения или тока переводятся в числа, затем выводятся на экран.

Но при этом внутри каждого такого прибора находится аналоговый преобразователь. Зачастую он представляет собой датчик, снимающий и отправляющий показания с целью преобразования их в цифровой код.

Хотя аналоговые инструменты менее точны, они обладают простотой и лучшей надежностью. А также существуют разновидности аналоговых инструментов и приборов, имеющих в своем составе усилители и преобразователи величин. По ряду причин они предпочтительнее механических устройств.

Для давления и тока

Каждому еще со школы или университета знакомы такие названия измерительных приборов, как барометры и амперметры. Первые предназначены для того, чтобы измерять атмосферное давление. Встречаются жидкостные и механические барометры.

Жидкостные разновидности считаются профессиональными из-за сложности конструкции и особенностей работы с ними. Метеостанции применяют барометры, заполненные внутри ртутью. Они наиболее точные и надежные, позволяют работать при перепадах температур и иных обстоятельствах. Механические конструкции проще, но постепенно их вытесняют цифровые аналоги.

Амперметры используются для измерения электрического тока в амперах. Шкала амперметра может градуироваться как в стандартных амперах, так и микро-, милли- и килоамперах. Лучше всего такие приборы подключать последовательно. В таком случае снижается сопротивление, а точность снимаемых показателей возрастает.

Слесарные инструменты

Достаточно часто можно встретить измерительные слесарные инструменты. Наиболее важная характеристика — точность измерений. За счет того, что слесарные инструменты механические, удается добиться точности до 0,005 или 0,1 мм.

Если погрешность измерений превысит допустимый порог, то произойдет нарушение технологии работы инструмента. Тогда потребуется переточка некачественной детали или замена целого узла в устройстве. Поэтому для слесаря важно при подгонке вала под втулку использовать не линейку, а инструменты с большей точностью измерений.

Наиболее популярным инструментом с высокой точностью измерений является штангенциркуль. Но и он не сможет дать гарантии точного результата с первого измерения. Опытные рабочие делают несколько измерений, которые затем преобразуют в некоторое среднее значение.

Встречаются операции, требующие максимальной точности. Таких много в микромашинах и отдельных деталях устройств крупного размера. Тогда следует воспользоваться микрометром. С его помощью можно измерять с точностью до сотых долей миллиметров. Распространенное заблуждение о том, что он позволяет измерять микроны, является не совсем верным. Да и при проведении стандартных домашних работ такая точность может не пригодиться, поскольку достаточно действующих значений точности и погрешности.

Специальные устройства

Существует такое известное устройство для измерения под названием угломер.

Его предназначение заключается в измерении углов деталей, а конструкция состоит из следующих элементов:

Процесс измерения таким прибором простой. Деталь прикладывается одной из граней к линейке. Сдвинуть ее надо таким образом, чтобы образовался равномерный и достаточный просвет между гранями и линейками. Затем сектор закрепляется винтом. Снимаются показатели сначала с линейки, а затем с нониуса.

Контрольно-измерительные устройства нашли довольно широкое применение в различных сферах производства, домашнего быта, слесарного дела и строительных работ. Они различаются как по сфере применения, так и по возможности измерения.

Все приборы могут подразделяться по способу преобразования, выдачи информации и виду выходной информации, предназначения и другим критериям. Имея хорошую классификацию, можно отыскать конкретный инструмент для определенных задач и операций.

Но главная цель у них состоит в измерении показаний, их записи и контроле технологических процессов производства. Рекомендуются использовать точные измерительные устройства, однако, устройство становится гораздо сложнее. Это потребует учета большого количества факторов и измерений параметров, чтобы вывести на экран точные показания.

Виды контрольно-измерительных приборов

Измерительные приборы – это специальные устройства, которые необходимы для сравнения измеряемой величины с единицей измерения. На сегодняшний день можно выделить следующие виды контрольно-измерительных приборов:

  1. Род измеряемой величины.
  2. Способ отсчета.
  3. Класс точности.
  4. Назначение.

Виды контрольно-измерительных приборов

В зависимости от того, какие величины будут измеряться в дальнейшем устройства можно разделить на следующие группы:

  1. Для измерения температуры.
  2. Для измерения давления.
  3. Для измерения количества расхода жидкостей.
  4. Для измерения уровня жидкости, а также сыпучих тел.
  5. Для качественных измерений.

Также виды контрольно-измерительных приборов могут различаться в зависимости по способу отсчета:

  1. С наводной ручкой.
  2. Самопишущие.
  3. Показывающие.
  4. Суммирующие.
  5. Сигнализирующие.

К приборам, которые имеют ручную наводку относятся такие, у которых при измерении сравнение измеряемой величины с образцами или мерами осуществляется при участии человека. Показывающие приборы в момент измерения указывается значение измеряемой величины. В большинстве случаев значение будет определяться визуально по шкалам.

Измерительные приборы также могут отличаться в зависимости от конструкции на щитовые и переносные. Стационарные устройства предназначаются для непрерывного контроля измеряемой величины. Благодаря переносным приборам у вас появится возможность проводить замеры периодически или эпизодически.

Самопишущие приборы

Самопишущие приборы позволяют автоматически записывать все результаты измерения на бумажной ленте. В большинстве случаев эта запись напоминает простую линию, которая изменяется.

Суммирующие приборы

Суммирующие приборы позволяют показать суммарное значение величины, которая измерялась. Счетчики позволяют показывать количество потребляемой энергии, воды или газа.

Важно знать! Сигнализирующие приборы при достижении определенного уровня величины будут просто подавать звуковой сигнал.

В зависимости от назначения производители изготовляют следующие приборы:

Общепромышленные измерительные приборы

Технические общепромышленные измерительные приборы являются устройствами, которые в дальнейшем будут использовать только на производстве. Их конструкция достаточно проста и в большинстве случаев подобные устройства будут иметь специальные шкалы с крупным циферблатом. Читайте также о том, как пользоваться мультиметром.

Лабораторные приборы

Контрольные и лабораторные устройства также могут применяться для быстрой проверки технических приборов и при проведении наладочных работ. Обычно благодаря подобным устройствам можно проверять технические и лабораторные приборы. Контрольные и лабораторные приборы изготовляют с более высоким классом точности.

Эталонные приборы

Эталонные и образцовые приборы могут использовать для проверки измерительных приборов. Основным их предназначением считается хранение и воспроизведение единиц, которые имеют наивысшую точность. Образцовые приборы во время измерения позволяют предоставить точные данные. Одной из важнейших характеристик подобных устройств считается чувствительность прибора.

Чувствительность прибора – это отношение величины линейного или углового перемещения стрелки, к изменению значению измеряемой величины.

Чувствительность в большинстве случаев выражается в числах деления прибора. Теперь вы знаете, какие существуют виды контрольно-измерительных приборов. Надеемся, что эта информация была полезной и интересной.

Что такое КИПиА: описание, виды, сферы применения

Современные технические устройства содержат множество элементов, в том числе – КИПиА. Под этой аббревиатурой понимают контрольно-измерительные приборы и автоматику. Это целая группа различной аппаратуры, которая используется как в производственных агрегатах, мощных и громоздких машинах, работающих в промышленности, так и в обычной бытовой технике, которая есть в каждой семье. Такие приборы контролируют работу устройств, делая их использование более комфортным и удобным.

Почему измерительные приборы и автоматика объединены в одну группу? В современной технике такая аппаратура используется именно в тандеме. Измерительный прибор может считать данные, определив какую-либо величину или уровень содержания определенных веществ, а вот автоматика обрабатывает полученную информацию, и на основе этого принимает решение – продолжать ли работу, блокировать какой-то элемент, переключить режим. Через нее подаются все необходимые сигналы, она отвечает за корректную работу техники.

Помощь в подборе оборудования: +7 (495) 211 03 84

Ваше сообщение было успешно отправлено!

Наши специалисты скоро свяжутся с Вами!

Как используются КИПиА в бытовой технике?

Если взглянуть на технику, которая используется в быту, то можно обнаружить, что практически любой аппарат имеет какой-то прибор, измеряющий тот или иной параметр:

  1. Например, в котлах и радиаторах может контролироваться горячая вода и ее температура, уровень жидкости.
  2. В кондиционерах и схожих устройствах контролируется состояние воздуха.
  3. Электричество и действующая сила тока отслеживается во многих бытовых приборах: утюгах, мультиварках, отопительных радиаторах масляного типа.

Что касается автоматизированных систем, то обычно они представляют собой специальную микросхему, такие детали пришли на смену громоздким управляющим блокам. Благодаря усовершенствованию технологии снабдить автоматическим управлением можно практически любую технику, даже если она совсем небольшая.

Классификации КИП

Принято делить приборы контрольно-измерительного типа на группы. В основе одной из классификаций лежат те физико-химические и количественные показатели, которые устройства измеряют. Это видно и по названию групп:

Читайте также:  Кирпич керамический одинарный - лицевой красный

Также можно классифицировать приборы по средствам измерения:

Каждая группа включает в себя большое число различных приборов, у которых есть свои отличия, поэтому внутригрупповое деление тоже присутствует. Например, термометры можно разделить на жидкостные, работающие при помощи электричества, либо с преобразованием сопротивления. Также в эту группу входят и различные тепловизоры, пирометры.

Манометры – группа приборов для измерения давления, и у них также найдутся отличия. Есть устройства, которые измеряют избыточное давление, а другие считывают перепады, некоторые же настроены на абсолютную величину. Конструкция тоже может быть разной – механической, электронной. В группу также можно внести реле давления.

Расходомеры – сложные приспособления, они отвечают за информацию о массе веществ или объеме материала. При этом средства измерения могут применяться разные, отличается и конструкция, многое зависит от того, в какой среде прибор будет применяться, и какое вещество будут измерять. Каждый прибор такого типа по своему строению подходит под определенные условия эксплуатации. Важно, что рабочая среда обязательно должна быть неэлектрической, поскольку в автоматическом блоке информация преобразуется непосредственно в электрические сигналы. Что касается уровня напряжения или силы тока, которые непосредственно связаны с электричеством, то эти величины не считываются в чистом виде, прибор взаимодействует с датчиками, которые установлены в электросети, и получает от них необходимые сигналы.

Можно классифицировать их по способу отсчета, выделив несколько групп:

  1. Приборы с ручной наводкой требуют участия человека в этом процессе, несмотря на то, что они считывают данные, не все действия происходят автоматически.
  2. Показывающие имеют некую шкалу, позволяющую определить тот или иной параметр, либо выводят значения на дисплей, если это электронное устройство. Эти приспособления могут быть стационарного типа, снимающие показатели постоянно, либо переносные, которые используются только в определенный промежуток рабочего времени.
  3. Самопишущие умеют фиксировать получаемые показатели, для этого используется лента или диск в качестве носителя. Например, устройство может чертить диаграмму, по которой определяют правильность технологического процесса или расход определенных материалов.
  4. Суммирующие показывают суммарный показатель той или иной величины, к этой категории относятся всевозможные счетчики, которые складывают полученные данные.
  5. Сигнализирующие при достижении определенного параметра, уровня расхода подают сигнал об этом при помощи звука или света.

По назначению их тоже можно классифицировать, разделив их, учитывая характерные особенности:

  1. Технические или эксплуатационные устройства используются, прежде всего, в рабочих условиях, в промышленности и на производстве. Их конструкция отличается повышенной прочностью и надежностью, они должны выдерживать активную эксплуатацию. Шкалы у них четкие и удобные, позволяющие быстро увидеть нужное значение. Также они делятся на классы по точности.
  2. Контрольные или лабораторные применяются для проверки техники и ее настройки. Как правило, с их помощью настраивают технические устройства перед вводом в эксплуатацию или во время диагностики. Они более точные. Контрольные используются на месте, часто бывают переносными, а лабораторные применяются в специально оснащенных помещениях – лабораториях.
  3. Эталонные и образцовые имеют наивысший показатель точности, служат ориентиром для всех остальных устройств, показывая самый четкий результат.

Где применяются КИПиА и кто следит за их обслуживанием?

Встретить устройства подобного типа можно в самых разных сферах, они используются в различных областях промышленности, устанавливаются в сложных устройствах, а также применяются и в быту, входят в состав домашней техники. Контрольно-измерительными приборами также являются привычные всем инструменты для ремонта: электронный уровень, мультиметр и прочие приспособления.

Кто занимается этими приборами? Все зависит от вида и сложности конкретного устройства, например, сломавшуюся бытовую технику обычно относят в ремонтный сервис, где мастер ее чинит, в том числе, осматривая и КИПиА. Если речь о сложных аппаратах, то они находятся под ведомством такого специалиста, как инженер по КИПиА, обычно такая должность есть на крупных предприятиях. Именно этот сотрудник занимается ремонтом, пуском и наладкой нового поступившего оборудования, диагностикой, проверкой и решением прочих вопросов по этой части.

Если у Вас остались вопросы, заполните форму:

Координатно-измерительные машины и 3D-сканеры в промышленности

Top 3D Shop приветствует вас! Сегодня рассказываем о технологиях механического и оптического сканирования в трех измерениях. Знакомим с принципами работы и областями применения КИМ — координатно-измерительных машин. Сравниваем разное оборудование. Узнайте больше из статьи.

Введение


Источник: aberlink.com

Координатно-измерительные машины (КИМ) – это приборы для точных контактных измерений объектов. Устройства работают при помощи специальных датчиков (зондов), определяющих положение точек на поверхности объектов.

Перемещением измерительной головки может управлять компьютер или оператор. Координатно-измерительная машина определяет положение датчика по изменению его положения, в сравнении с исходной позицией по осям XYZ. Для работы в труднодоступных участках КИМ изменяет угол наклона датчика при движении.


Источник: starrapid.com

Хронология создания КИМ

1950-е годы XX века. Шотландская компания Ferranti Company представила миру первый образец 2х-осевой измерительной машины. Устройство было разработано для решения задач военной промышленности.

1960-е годы XX века. Итальянская компания DEA создает 3х-осевые КИМ.

1970-е годы XX века. Появление устройств, управляемых компьютером.

1980-е годы XX века. Browne&Sharpe разрабатывают первую коммерческую машину с цифровым управлением.

Стоявшие у истоков развития отрасли Browne&Sharpe и DEA теперь входят в состав шведского холдинга Hexagon AB.

Механические измерения

Ручные КИМ


Источник: directindustry.com

Портативные ручные КИМ мобильны, их можно использовать в любом месте на производстве. Большинство приборов беспроводные, поэтому могут работать на труднодоступных участках. Устройства разработаны для высокоточных измерений деталей сложной геометрической формы: со сложными гранями, отверстиями, углубления и тп. При помощи оборудования проводят GD&T анализ (формы, размеров и допусков) и контрольные сравнения готовых образцов с базовыми цифровым моделями.


Источник: directindustry.com

Для работы с ручными КИМ не нужна специальная подготовка, так как оборудование не требует сложной настройки и калибровки. Использование таких приборов вместе с другими устройствами для изменений и оцифровки расширяет функционал и область применения оборудования.

Горизонтальные рычажные КИМ


Источник: metrology.news

В случаях, когда нужен свободный доступ к детали с разных сторон, используют КИМ с горизонтальным рычагом. Устройство работает на тяжелой платформе, которая гарантирует неподвижность объекта во время измерений. Конструкция предусматривает защиту пользователей от травм, а предметов — от деформаций.

Среди контактных измерительных приборов, координатно-измерительные машины с горизонтальным рычагом быстрее всех решают задачи в области автоматизированного метрологического контроля.

Мостовые КИМ


Источник: metrology.news

Мостовые КИМ разработаны специально для высокоточных и сложных измерений. Они оцифровывают углубления и отверстия очень маленького диаметра. Конструктивные особенности приборов:

Два варианта исполнения: статичная рабочая платформа и подвижный мост, или статичный мост и подвижная платформа.

Портальные КИМ


Источник: directindustry.com

С помощью портальных КИМ измеряют крупногабаритные объекты. Сами приборы тоже имеют большой размер. Направляющие изготавливают из жестких, устойчивых к изменению температур и деформациям материалов. Открытый тип конструкции упрощает работу: установку, непосредственно измерение и перемещение деталей.

Оптическое 3D-сканирование

Лазерное 3D-сканирование


Источник: 3d-scantech.com

Лазерные 3D-сканеры — представители другой технологии измерений объектов. Одно из ключевых различий измерений при помощи зонда и лазера — в возможности передачи формы объектов. Механическое сканирование не дает представления о форме предметов. При оцифровке объектов лазерным сканером создается облако точек, на основании которого программное обеспечение формирует трехмерную детализированную и высокоточную модель.


Источник: whatech.com

Лазерное сканирование — бесконтактная технология, поэтому широко используется для дистанционного контроля качества, при работе с хрупкими и легко деформируемыми объектами. Так как лазеры – источники когерентного света, лазерные 3D-сканеры практически не подвержены колебаниям условий окружающей среды.

Сканирование со структурированной подсветкой


Источник: 1zu1prototypen.com

Оптические 3D-сканеры, работающие на базе технологии структурированного подсвета, обычно отличаются более демократичной ценой, по сравнению с лазерными устройствами. На объект сканирования направляют световую сетку, камеры фиксируют форму световой проекции и рассчитывают координаты каждой точки. На базе полученной информации программное обеспечение строит цифровую модель.


Источник: 1zu1prototypen.com

Несмотря на то, что 3D-сканеры, работающие по этой технологии, уступают в точности лазерным, они имеют ряд преимуществ:


Источник: 1zu1prototypen.com

При необходимости сканировать труднодоступные участки, например, каналы и отверстия, сканеры со структурированной подсветкой дополняют ручными инструментами для измерений.

Мультисенсорные устройства


Источник: interestingengineering.com

Совмещая контактные и бесконтактные технологии измерения, мультисенсорное оборудование включает в себя сильные стороны каждого метода:

Конструкция таких приборов представляет собой 3D-сканер, укомплектованный дополнительным щупом с датчиком.


Источник: metrology.news

Строение мультисенсорных машин не имеет строгих стандартов, поэтому они могут различаться у разных производителей и в зависимости от назначения.

Роботизированные координатно-измерительные машины


Источник: metrology.news

Лучшим решением для автоматизации измерений становятся роботы. Устройства работают независимо от условий внешней среды, всегда с одинаково высокой точностью, без усталости и выходных. Роботы заменяют людей в условиях вредного и опасного производства. Работают с крупногабаритными и мелкими объектами.

В качестве датчика может выступать КИМ, оптический сканер, зонд и другие контрольные приборы. Сегодняшний опыт использования доказывает, что роботизированным КИМ доступны любые метрологические измерения.

Кейсы с использованием измерительного оборудования

Оцифровка шестерни для модернизации, DeWys Engineering


Источник: youtu.be

Перед компанией стояла задача — реконструкция вышедшей из строя крупной литой шестерни из коробки передач. Для решения был использован роботизированный 8-ми осевой мультисенсорный центр Faro Platinum Arm LLP V3, оснащенный функциями механического и лазерного трехмерного сканирования. После оцифровки и контроля отверстий детали, данные были собраны и обработаны в программном обеспечении Geomagic Design X. Созданная модель была отправлена в Soildworks для дополнительной обработки, затем специалисты DeWys Engineering подготовили файл с руководством по созданию копии шестерни на зубофрезерном станке.

Контроль качества крупных партий товара, Computer Aided Technology


Источник: cati.com

Боб Ренелла, менеджер компании, поделился, что предприятие регулярно проводило контроль качества крупных партий деталей. В связи с этим перед ним встала задача — оптимизировать процессы: сократить временные затраты без потери точность проверки. Привычные технологии уже не устраивали компанию: в проверке каждой детали был задействован оператор, случались потери времени и качества.

Computer Aided Technology оказалась в условиях выбора:


Источник: creaform3d.com

Руководство остановилось на последнем варианте. В результате приобретения комплекта: беспроводного Creaform HandyProbe и двухкамерного C-Track компания получила ряд преимуществ:

  1. Мобильный сканер позволил оператору работать на любом участке предприятия, что позволило сэкономить время и усилия, которые тратили на транспортировку партий товара к месту проверки.
  2. Размер проверяемых деталей перестал быть ограничен возможностями старой контрольно-измерительной машины.

Благодаря совместному использованию Creaform HandyProbe и программного решения от INNOVMETRIC — PolyWorks Inspector, работа оператора стала значительно проще. Теперь специалист действует по алгоритму, предложенному ПО в режиме реального времени.

Инспекция 10-ти метрового рычага вала при помощи ScanTech TrackScan и светового пера TrackProbe за 15 минут


Источник: 3d-scantech.com

При работе экскаватора на рычаг ковша действуют большие нагрузки, вследствие которых втулки отверстия вала ковша интенсивно изнашиваются. Увеличение диаметра отверстия вала ковша приводит к увеличению биения вала в отверстии рычага, что впоследствии влечет за собой поломку техники. Соответственно, регулярная инспекция размера отверстий рычага предотвращает выход из строя оборудования. Покупать КИМ для решения этой задачи — дорого и нецелесообразно, так как такие машины устанавливают стационарно, а транспортировка крупногабаритных деталей к месту установки КИМ влечет за собой дополнительные временные и финансовые затраты.


Источник: 3d-scantech.com

Оцифровка, обработка результатов и контроль качества 10-метрового рычага прямо на месте эксплуатации заняли 15 минут. Специалисты использовали 3D-сканер ScanTech TrackScan, созданный в партнерстве с норвежским производителем Metronor. Сканер работает без маркеров, в комплекте со световой ручкой TrackProbe производит высокоточные измерения отверстий любой глубины и радиуса.

Итоги


Источник: creaform3d.com

Требования к качеству продукции, в условиях жесткой конкуренции между производителями, постоянно растут. Соответственно, растут потребности производства в оптимизации процессов контроля качества: увеличении скорости и точности, снижении себестоимости. Рынок требует профессиональное оборудование: 3D-сканеры и КИМ, несложные в эксплуатации, готовые к применению, решающие специфические задачи различных отраслей.

Для создания соответствующей высоким требованиям потребителей продукции, сохранения конкурентных позиций, поставщикам товаров и услуг необходимо своевременно инвестировать в современное оборудование.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *